Softcomputing

March 26, 2010 at 10:25 am (Softcomputing) ()

SOFTCOMPUTING

Berbagai macam definisi softcomputing diberikan oleh para ahli. Salah satu definisinya adalah sebagaimana disampaikan oleh pencetus softcomputing, yaitu Prof. Lotfi A. Zadeh, di homepage BISC :

“Berbeda dengan pendekatan konvensional hardcomputing, softcomputing dapat bekerja dengan baik walaupun terdapat ketidakpastian, ketidakakuratan maupun kebenaran parsial pada data yang diolah. Hal inilah yang melatarbelakangi fenomena dimana kebanyakan metode softcomputing mengambil human-mind sebagai model.”.

Mengapakah human-mind merupakan model yang menarik bagi pengembangan softcomputing ? Kunci dari pertanyaan ini sebenarnya terletak pada struktur dan fungsi dari otak manusia. Otak manusia merupakan mesin molekuler, yang terdiri dari dua jenis sel: neuron dan glia. Dalam otak kita terdapat sekitar 1011 sel neuron, sedangkan sel glia sekitar 3 sampai 4 kali lipatnya. Sel neuron berfungsi sebagai pemroses informasi yang diterima oleh otak. Sel neuron terhubung antara satu dengan yang lain dengan benang-benang panjang. Berat otak manusia saat lahir sekitar 400 gram, sedangkan saat dewasa sekitar 1500 gram. Pertambahan berat ini disebabkan oleh bertambahpanjangnya benang-benang tersebut, disamping pertambahan sel glia. Pertambahan panjang ini berkaitan erat dengan proses pembelajaran yang dialami oleh manusia. Hal ini merupakan ide awal bagi pengembangan metode softcomputing: artificial neural network, yang memiliki kemampuan pembelajaran terhadap informasi yang telah diterima. Selain kemampuan pembelajaran, otak manusia juga memiliki kemampuan untuk mengambil keputusan walaupun informasi mengandung unsur ketakpastian dan kekurangtegasan, seperti “manis”, “pahit”, “tinggi”, “rendah”, dsb. Hal ini merupakan konsep yang mendasari pengembangan metode fuzzy, yang mencerminkan cara berfikir manusia.

Selain neural network dan fuzzy, masih banyak lagi jenis-jenis metode softcomputing, yang ide awalnya bersumber dari otak manusia maupun mekanisme biologi yang terdapat di alam semesta.

Metode-metode Softcomputing

Mengacu pada definisi yang diberikan oleh Zadeh, metode-metode dalam softcomputing dapat  ikategorikan ke dalam tiga kategori besar:

  • Fuzzy Logic (FL)
  • Neural Network Theory (NN)
  • Probabilistic Reasoning (PR)

Metode-metode ini sebenarnya bukanlah sesuatu yang baru diadakan setelah konsep softcomputing dirumuskan. Yang terjadi justru sebaliknya. Metode-metode Fuzzy Logic, Neural Network maupun Probabilistic Reasoning telah ada lebih dahulu. Fuzzy Logic telah berkembang sejak tahun 1965. Konsep-konsep dasar neural network telah digali sejak tahun 1940-an. Probabilistic Reasoning juga bukanlah hal yang baru sama sekali. Karena itu, Zadeh menyebut softcomputing sebagai reinkarnasi dari metode-metode di atas. Lebih lanjut lagi, dalam konsep softcomputing, ketiga jenis metode ini  barat pilar, saling mendukung dan bekerjasama dalam memecahkan suatu permasalahan. Keunggulan yang diperoleh dari kerjasama metode-metode itu lebih ditekankan daripada keunggulan individual salah satu daripadanya. Kekurangan satu metode akan ditutup dengan kelebihan metode yang lain. Keunggulan satu metode disumbangkan, sehingga segi-segi positif dari metode yang ada tersebut dapat dimanfaatkan secara optimal. Berikut diuraikan konsep dan gambaran mengenai masing-masing  pilar dalam softcomputing.

Fuzzy Logic (FL)

Logika Fuzzy adalah peningkatan dari logika Boolean yang berhadapan dengan konsep kebenaran sebagian. Di mana logika klasik menyatakan bahwa segala hal dapat diekspresikan dalam istilah binary (0 atau 1, hitam atau putih, ya atau tidak), logika fuzzy menggantikan kebenaran boolean dengan tingkat kebenaran.

Logika Fuzzy memungkinkan nilai keanggotaan antara 0 dan 1, tingkat keabuan dan juga hitam dan putih, dan dalam bentuk linguistik, konsep tidak pasti seperti “sedikit”, “lumayan”, dan “sangat”. Dia berhubungan dengan set fuzzy dan teori kemungkinan.

Karakteristik dari metode ini adalah:

  • Pemecahan masalah dilakukan dengan menjelaskan sistem bukan lewat angka-angka, melainkan secara linguistik, atau variable-variable yang mengandung ketakpastian /ketidaktegasan.
  • Pemakaian if-then rules untuk menjelaskan kaitan antara satu variable dengan yang lain.
  • Menjelaskan sistem memakai algoritma fuzzy

Berawal dari paper-paper Zadeh di tahun 1965 mengenai fuzzy-sets, ilmu ini berkembang pesat, dan mulai menemukan aplikasinya di bidang control pada tahun 1974. Pada saat itu, Mamdani memperkenalkan aplikasi fuzzy sebagai alat kontrol steam-engine. Hal ini merupakan momentum penting, sebagai awal bagi teknologi fuzzy untuk menemukan lading aplikasi di dunia industri. Fuzzy memiliki kelebihan-kelebihan, diantaranya :

  1. Dapat mengekspresikan konsep yang sulit untuk dirumuskan, seperti misalnya “suhu ruangan yang nyaman”
  2. Pemakaian membership-function memungkinkan fuzzy untuk melakukan observasi obyektif terhadap nilai-nilai yang subyektif. Selanjutnya membership-function ini dapat dikombinasikan untuk membuat pengungkapan konsep yang lebih jelas.
  3. Penerapan logika dalam pengambilan keputusan

Neural Networks

Neural Networks (Jaringan Saraf Tiruan) menurut Haykin [4] didefinisikan sebagai berikut :

“Sebuah neural network (JST: Jaringan Saraf Tiruan) adalah prosesor yang terdistribusi paralel, terbuat dari unit-unit yang sederhana, dan memiliki kemampuan untuk menyimpan pengetahuan yang diperoleh secara eksperimental dan siap pakai untuk berbagai tujuan. Neural network ini meniru otak manusia dari sudut : 1) Pengetahuan diperoleh oleh network dari lingkungan, melalui suatu proses pembelajaran. 2) Kekuatan koneksi antar unit yang disebut synaptic weights, berfungsi untuk menyimpan pengetahuan yang telah diperoleh oleh jaringan tersebut.”

Jaringan saraf tiruan (JST) (Bahasa Inggris: artificial neural network (ANN), atau juga disebut simulated neural network (SNN), atau umumnya hanya disebut neural network (NN)), adalah jaringan dari sekelompok unit pemroses kecil yang dimodelkan berdasarkan jaringan saraf manusia. JST merupakan sistem adaptif yang dapat merubah strukturnya untuk memecahkan masalah berdasarkan informasi eksternal maupun internal yang mengalir melalui jaringan tersebut.

Secara sederhana, JST adalah sebuah alat pemodela data statistik non-linier. JST dapat digunakan untuk memodelkan hubungan yang kompleks antara input dan output untuk menemukan pola-pola pada data.

Probabilistic Reasoning (PR) dan Genetic Algorithm (GA)

Reasoning berarti mengambil suatu keputusan atas suatu alasan atau sebab tertentu. Dua jenis reasoning adalah logical reasoning dan probabilistic reasoning. Salah satu kelebihan probabilistic reasoning dibandingkan logical reasoning terletak pada kemampuan untuk mengambil keputusan yang rasional, walaupun informasi yang diolah kurang lengkap atau mengandung unsur ketidakpastian  termasuk dalam kategori PR antara lain teori Chaos, Belief Networks, Genetic Algorithm. Diskusi dalam makalah ini difokuskan pada salah satu metode dalam PR, yaitu Genetic Algorithm (GA)

Beberapa keunggulan yang dimiliki oleh GA adalah :

  1. GA memiliki kemampuan untuk mencari nilai optimal secara paralel, melalui proses kerjasama antara berbagai unit yang disebut kromosom individu.
  2. GA tidak memerlukan perhitungan matematika yang rumit seperti differensial yang diperlukan oleh algoritma optimisasi yang lain.

Namun demikian GA memiliki juga kelemahan dan keterbatasan.

  1. Tidak memiliki rumusan yang pasti, bagaimana mentransfer parameter permasalahan ke dalam kode genetik. Dengan kata lain, hal ini memerlukan pengalaman dan wawasan dari desainer.
  2. Banyak parameter yang perlu diset secara baik agar proses evolusi dalam GA berjalan sesuai dengan yang diharapkan.
  3. Penentuan rumus menghitung fitness merupakan hal yang sangat penting dan mempengaruhi proses evolusi pada GA.Sayangnya tidak ada prosedur yang baku bagaimana menentukan rumus tsb. Dalam hal ini pengalaman dari desainer memegang peranan penting.

Terlepas dari kendala yang ada, GA merupakan alternatif solusi yang dikenal cukup handal dalam berbagai masalah optimisasi.

Disarikan dari  :

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: